Enhanced removal of As (V) from aqueous solution using modified hydrous ferric oxide nanoparticles
نویسندگان
چکیده
Hydrous ferric oxide (HFO) is most effective with high treatment capacity on arsenate [As(V)] sorption although its transformation and aggregation nature need further improvement. Here, HFO nanoparticles with carboxymethyl cellulose (CMC) or starch as modifier was synthesized for the purpose of stability improvement and As(V) removal from water. Comparatively, CMC might be the optimum stabilizer for HFO nanoparticles because of more effective physical and chemical stability. The large-pore structure, high surface specific area, and the non-aggregated nature of CMC-HFO lead to increased adsorption sites, and thus high adsorption capacities of As(V) without pre-treatment (355 mg·g-1), which is much greater than those reported in previous studies. Second-order equation and dual-mode isotherm model could be successfully used to interpret the sorption kinetics and isotherms of As(V), respectively. FTIR, XPS and XRD analyses suggested that precipitation and surface complexation were primary mechanisms for As(V) removal by CMC modified HFO nanoparticles. A surface complexation model (SCM) was used to simulate As adsorption over pH 2.5-10.4. The predominant adsorbed arsenate species were modeled as bidentate binuclear surface complexes at low pH and as monodentate complexes at high pH. The immobilized arsenic remained stable when aging for 270 d at room temperature.
منابع مشابه
Ultrasound-enhanced Copper Removal by Hydrous Iron Oxide Adsorption
A model system to investigate ultrasound-enhanced removal of metallic ions from aqueous solution by hydrous ferric oxide (HFO) adsorption has been conducted. The experimental data indicate that ultrasonic treatment of pre-formed HFO flocs can lead to enhanced removal of metallic ions from aqueous solution and that the level of enhancement is strongly correlated with the solution pH. Ultrasonic ...
متن کاملMesoporous Carbon Modified with Iron Oxide Based Magnetic Nanomaterials for Removal of Malachite Green Dye From Aqueous Solution
Mesoporous carbon (CMK-3) modified with Fe3O4 nanoparticles has been successfully synthesized and characterized by powder X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscope (SEM) and transmission electron microscopy (TEM).The results depict that the synthesized Fe-CMK-3 preserved the ordered mesoporous structure of CMK-3, and magnetic species were dispersed insi...
متن کاملApplication of walnut shell modified with Zinc Oxide (ZnO) nanoparticles in removal of natural organic matters (NOMs) from aqueous solution
Background & Aims of the Study: Natural organic matters (NOMs) are a mixture of chemically complex polyelectrolytes produced mainly from the decomposition of plant and animal residues that are present in all surface and groundwater resources. This paper evaluates the aqueous NOMs adsorption efficiency on walnut shell modified with Zinc Oxide (ZnO). Materials & Methods: This stud...
متن کاملAdsorption of Acid blue 92 dye on modified diatomite by nickel oxide nanoparticles in aqueous solutions
Adsorbent prepared from waste plants for the treatment of dyeing effluents have high significance in environmental sustainability. In this research, adsorption of Acid Blue 92AB 92 dye from aqueous solutions on raw and modified diatomite nickel oxide nanoparticles was studied. The effect of different operation parameters such as pH, contact time, initial dye concentration, calcinations and sorb...
متن کاملRemoval of Cd (II) in Water Samples Using Modified Magnetic Iron Oxide Nanoparticle
Background: Heavy metals, even at low concentrations, are harmful to human health and environment. Cadmium as a heavy metal is highly toxic and can cause serious threat to living organisms. This research was designed to evaluate the adsorption potential of modified magnetic iron nanoparticles by 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol ligand for the removal of cadmium ions from water solu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017